Polynomial Simulation and Refutation of Complex Formulas of Resolution over Linear Equations in Propositional Proof System

نویسندگان

  • Vishwa Nath Maurya
  • Avadhesh Kumar Maurya
چکیده

Abstract In this paper, we present that the propositional proof system R(lin) (Resolution over Linear Equations) established by Ran Raz and Iddo Tzameret is not a super system, there exists a sequence of tautologies, which require proof complexity exponential in size of tautologies. We show that there are the sequence of unsatisfiable collections of disjuncts of linear equations, which require exponential lower bounds in R(lin) and have polynomially bounded refutations by incorporating renaming inference rule to R(lin) system. Some additional properties of R(lin) have been described that many of the “hard” provable in R outstanding examples of propositional tautologies (contradictions) have polynomially bounded proofs in R(lin).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Sparser Random 3SAT Refutation Algorithms and Feasible Interpolation

We formalize a combinatorial principle, called the 3XOR principle, due to Feige, Kim and Ofek [FKO06], as a family of unsatisfiable propositional formulas for which refutations of small size in any propositional proof system that possesses the feasible interpolation property imply an efficient deterministic refutation algorithm for random 3SAT with n variables and Ω(n) clauses. Such small size ...

متن کامل

Tel Aviv University the Raymond and Beverly Sackler Faculty of Exact Sciences School of Computer Science Studies in Algebraic and Propositional Proof Complexity

The field of proof complexity aims at characterizing which statements have short proofs in a given formal proof system. This thesis is a contribution to proof complexity broadly construed as the field that studies the sizes of structured or symbolic proofs. Our focus will be on the development and complexity-theoretic study of new frameworks, mainly of an algebraic nature, for providing, among ...

متن کامل

Sparser Random 3SAT Refutation Algorithms and the Interpolation Problem

We formalize a combinatorial principle, called the 3XOR principle, due to Feige, Kim and Ofek [14], as a family of unsatisfiable propositional formulas for which refutations of small size in any propositional proof system that possesses the feasible interpolation property imply an efficient deterministic refutation algorithm for random 3SAT with n variables and Ω(n) clauses. Such small size ref...

متن کامل

Sparser Random 3-SAT Refutation Algorithms and the Interpolation Problem - (Extended Abstract)

We formalize a combinatorial principle, called the 3XOR principle, due to Feige, Kim and Ofek [14], as a family of unsatisfiable propositional formulas for which refutations of small size in any propositional proof system that possesses the feasible interpolation property imply an efficient deterministic refutation algorithm for random 3SAT with n variables and Ω(n) clauses. Such small size ref...

متن کامل

Cutting plane and Frege proofs

The cutting plane refutation system CP for propositional logic is an extension of resolution and is based on showing the non-existence of solutions for families of integer linear inequalities. We deene the system CP + , a modiication of the cutting plane system, and show that CP + can polynomially simulate Frege systems F. In 8], it is shown that F polynomially simulates CP + , so both systems ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014